Fall 2017

Homework 4

(Due date: December 4th @ 5:30 pm) You can submit in groups of two (2) students.

PROBLEM 1 (60 PTS)

- Design the pipelined Circular CORDIC architecture (basic range of convergence) with N iterations shown in the figure below. In this circuit, rotation mode occurs when mode = '0', and vectoring mode occurs when mode = '1'.
- The circuit must be written in parametric VHDL code with N as the only parameter. N = 4 to 16.
- Tip: Implement a stage *i* as a parametric component. Then on the top file, just instantiate *N* of those components.

PROBLEM 2 (40 PTS)

- Simulate the circuit by reading input values (x_0, y_0, z_0) from input text files and writing output values (x_N, y_N, z_N) on output text files. We need to test the parameterized CORDIC circuit for N = 12 and N = 16. The testbench must:
 - ✓ Read input values (x_0 , y_0 , z_0) from two input text files:
 - □ in_benchR.txt: Data for Rotation Mode testing. Generate this file with MATLAB®. 100 data points (x_0 , y_0 , z_0). Data format: [16 14]. Each line per data point written as hexadecimals: $|x_0|y_0|z_0|$. Data set: $x_0 = 0$, $y_0 = 1/A_n$, $z_0 = -\pi/2$ to $\pi/2$. z_0 : 100 equally-spaced values between $-\pi/2$ to $\pi/2$. With this data set in the rotation mode, note that $x_N \to -sin(z_0)$, $y_N \to cos(z_0)$.
 - in_benchV.txt: Data for Vectoring Mode testing. Generate this file with MATLAB®. 100 data points (x_0, y_0, z_0) . Data format: [16 14]. Each line per data point written as hexadecimals: $|x_0|y_0|z_0|$. Data set: $x_0 = 0.0 \text{ to } 0.5, y_0 = 1, z_0 = 0$. x_0 : 100 equally-spaced values between 0.0 to 0.5. With this data set in the vectoring mode, note that $x_N \to A_n \sqrt{x_0^2 + y_0^2}, z_N \to atan(y_0/x_0)$.
 - ✓ Write output results (x_N , y_N , z_N) on out_bench_N12.txt and out_bench_N16.txt. Data format: [16 14], each line per data point written as hexadecimals: $|x_N| y_N |z_N|$. Each output text file should have 200 data points (100 from the rotation mode and 100 from the vectoring mode).
- Vivado tips:
 - \checkmark Make sure that the input text files are loaded as simulation sources.
 - ✓ The output text file should appear in sim/sim_1/behav.
 - ✓ To verify that the output results are correct, you need to represent data as fixed-point numbers. Use Radix → Real Settings in the Vivado simulator window.
- MATLAB® (or Octave): Read data from the output text files and <u>plot</u> the results (rotation and vectoring modes for N = 12,16) along with the function values (Rotation: $x_N \rightarrow -sin(z_0)$, $y_N \rightarrow cos(z_0)$. Vectoring: $x_N \rightarrow A_n \sqrt{x_0^2 + y_0^2}$, $z_N \rightarrow atan(y_0/x_0)$ to which the CORDIC results should converge.
 - \checkmark *atan* in the CORDIC algorithm has a different definition, called *atan*2.

- ✓ VHDL code
- ✓ VHDL testbench
- ✓ Input text file for testbench
- \checkmark Output text file for testbench.